PARAEXP: A Parallel Integrator for Linear Initial-Value Problems

نویسندگان

  • Martin J. Gander
  • Stefan Güttel
چکیده

A novel parallel algorithm for the integration of linear initial-value problems is proposed. This algorithm is based on the simple observation that homogeneous problems can typically be integrated much faster than inhomogeneous problems. An overlapping time-domain decomposition is utilized to obtain decoupled inhomogeneous and homogeneous subproblems, and a near-optimal Krylov method is used for the fast exponential integration of the homogeneous subproblems. We present an error analysis and discuss the parallel scaling of our algorithm. The efficiency of this approach is demonstrated with numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ParaExp using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations

Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into sub-intervals and computes the solution on each sub-interval in parallel. The overall solution is decomposed into a particular solution defined on each sub-interval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied...

متن کامل

A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations

A parallel time integration method for nonlinear partial differential equations is proposed. It is based on a new implementation of the Paraexp method for linear partial differential equations (PDEs) employing a block Krylov subspace method. For nonlinear PDEs the algorithm is based on our Paraexp implementation within a waveform relaxation. The initial value problem is solved iteratively on a ...

متن کامل

Efficient solvers for time-dependent problems: a review of IMEX, LATIN, PARAEXP and PARAREAL algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models

In this paper, we introduce and comment some recent efficient solvers for time dependent partial differential or ordinary differential problems, considering both linear and nonlinear cases. Here “efficient” may have different meanings, for instance a computational complexity which is better than standard time advance schemes as well as a strong parallel efficiency, especially parallel-in-time c...

متن کامل

Solution of Linear Systems of Ordinary Differential Equations on an INTEL Hypercube

In this paper there is developed and tested a parallel scheme for the solution of linear systems of ordinary initial value problems based on the box scheme and a modified recursive doubling technique. The box scheme may be replaced by any stable integrator. The algorithm can be modified to solve boundary value problems. Software for both problems is available upon request. 1. Introduction. We c...

متن کامل

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013